Wavelet density estimators for the deconvolution of a component from a mixture
نویسنده
چکیده
We consider the model: Y = X+ , where X and are independent random variables. The density of is known whereas the one of X is a finite mixture with unknown components. Considering the ”ordinary smooth case” on the density of , we want to estimate a component of this mixture. To reach this goal, we develop two wavelet estimators: a nonadaptive based on a projection and an adaptive based on a hard thresholding rule. We evaluate their performances by taking the minimax approach under the mean integrated squared error over Besov balls. We prove that the adaptive one attains a sharp rate of convergence.
منابع مشابه
Wavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables
Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.
متن کاملWavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses
We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...
متن کاملOn the Usefulness of Meyer Wavelets for Deconvolution and Density Estimation
The aim of this paper is to show the usefulness of Meyer wavelets for the classical problem of density estimation and for density deconvolution fromnoisy observations. By using such wavelets, the computation of the empirical wavelet coefficients relies on the fast Fourier transform of the data and on the fact that Meyer wavelets are band-limited functions. This makes such estimators very simple...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملWavelet deconvolution
This paper studies the issue of optimal deconvolution density estimation using wavelets. We explore the asymptotic properties of estimators based on thresholding of estimated wavelet coe cients. Minimax rates of convergence under the integrated square loss are studied over Besov classes B pq of functions for both ordinary smooth and supersmooth convolution kernels. The minimax rates of converge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017